Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 7, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227151

RESUMO

The complex trait of yield is controlled by several quantitative trait loci (QTLs). Given the global water deficit issue, the development of rice varieties suitable for non-flooded cultivation holds significant importance in breeding programs. The powerful approach of Meta-QTL (MQTL) analysis can be used for the genetic dissection of complicated quantitative traits. In the current study, a comprehensive MQTL analysis was conducted to identify consistent QTL regions associated with drought tolerance and yield-related traits under water deficit conditions in rice. In total, 1087 QTLs from 134 rice populations, published between 2000 to 2021, were utilized in the analysis. Distinct MQTL analysis of the relevant traits resulted in the identification of 213 stable MQTLs. The confidence interval (CI) for the detected MQTLs was between 0.12 and 19.7 cM. The average CI of the identified MQTLs (4.68 cM) was 2.74 times narrower compared to the average CI of the initial QTLs. Interestingly, 63 MQTLs coincided with SNP peak positions detected by genome-wide association studies for yield and drought tolerance-associated traits under water deficit conditions in rice. Considering the genes located both in the QTL-overview peaks and the SNP peak positions, 19 novel candidate genes were introduced, which are associated with drought response index, plant height, panicle number, biomass, and grain yield. Moreover, an inclusive MQTL analysis was performed on all the traits to obtain "Breeding MQTLs". This analysis resulted in the identification of 96 MQTLs with a CI ranging from 0.01 to 9.0 cM. The mean CI of the obtained MQTLs (2.33 cM) was 4.66 times less than the mean CI of the original QTLs. Thirteen MQTLs fulfilling the criteria of having more than 10 initial QTLs, CI < 1 cM, and an average phenotypic variance explained greater than 10%, were designated as "Breeding MQTLs". These findings hold promise for assisting breeders in enhancing rice yield under drought stress conditions.

2.
Sci Rep ; 13(1): 6279, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072529

RESUMO

Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.


Assuntos
Cicer , Cicer/genética , Temperatura Baixa , Fatores de Transcrição/genética , Genótipo , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 12(1): 21696, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522395

RESUMO

Salinity seriously constrains growth and fertility of rice worldwide. Long non-coding RNAs (lncRNAs) play crucial roles in plant abiotic stress response. However, salt responsive lncRNAs are poorly understood in rice. Herein, salt responsive lncRNAs (DE-lncRNAs) were identified in FL478 (salt tolerant) compared to its susceptible parent (IR29) using RNA-seq in root tissues at seedling stage. In FL478 and IR29, 8724 and 9235 transcripts with length of > 200 bp were nominated as potential lncRNAs, respectively. Rigorous filtering left four (in FL478) and nine (in IR29) DE-lncRNAs with only 2 DE-lncRNAs in common. ATAC-seq data showed that the genomic regions of all four lncRNAs in FL478 and 6/9 in IR29 are significantly accessible for transcription. Weighted correlation network analysis (WGCNA) revealed that lncRNA.2-FL was highly correlated with 173 mRNAs as trans-targets and a gene encoding pentatricopeptide repeat (PPR) protein was predicted as cis-target of lncRNA.2-FL. In silico mutagenesis analysis proposed the same transcription factor binding sites (TFBSs) in vicinity of the trans- and cis-regulatory target genes of lncRNA.2-FL, which significantly affect their transcription start site (TSS). This study provides new insights into involvement of the DE-lncRNAs in rice response to salt stress. Among them, lncRNA.2-FL may play a significant regulatory role in the salt stress tolerance of FL478.


Assuntos
Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , RNA Mensageiro/genética
4.
Front Plant Sci ; 13: 792079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265092

RESUMO

Root system architecture (RSA) is an important agronomic trait with vital roles in plant productivity under water stress conditions. A deep and branched root system may help plants to avoid water stress by enabling them to acquire more water and nutrient resources. Nevertheless, our knowledge of the genetics and molecular control mechanisms of RSA is still relatively limited. In this study, we analyzed the transcriptome response of root tips to water stress in two well-known genotypes of rice: IR64, a high-yielding lowland genotype, which represents a drought-susceptible and shallow-rooting genotype; and Azucena, a traditional, upland, drought-tolerant and deep-rooting genotype. We collected samples from three zones (Z) of root tip: two consecutive 5 mm sections (Z1 and Z2) and the following next 10 mm section (Z3), which mainly includes meristematic and maturation regions. Our results showed that Z1 of Azucena was enriched for genes involved in cell cycle and division and root growth and development whereas in IR64 root, responses to oxidative stress were strongly enriched. While the expansion of the lateral root system was used as a strategy by both genotypes when facing water shortage, it was more pronounced in Azucena. Our results also suggested that by enhancing meristematic cell wall thickening for insulation purposes as a means of confronting stress, the sensitive IR64 genotype may have reduced its capacity for root elongation to extract water from deeper layers of the soil. Furthermore, several members of gene families such as NAC, AP2/ERF, AUX/IAA, EXPANSIN, WRKY, and MYB emerged as main players in RSA and drought adaptation. We also found that HSP and HSF gene families participated in oxidative stress inhibition in IR64 root tip. Meta-quantitative trait loci (QTL) analysis revealed that 288 differentially expressed genes were colocalized with RSA QTLs previously reported under drought and normal conditions. This finding warrants further research into their possible roles in drought adaptation. Overall, our analyses presented several major molecular differences between Azucena and IR64, which may partly explain their differential root growth responses to water stress. It appears that Azucena avoided water stress through enhancing growth and root exploration to access water, whereas IR64 might mainly rely on cell insulation to maintain water and antioxidant system to withstand stress. We identified a large number of novel RSA and drought associated candidate genes, which should encourage further exploration of their potential to enhance drought adaptation in rice.

5.
Theor Appl Genet ; 135(1): 81-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34623472

RESUMO

KEY MESSAGE: Applying an integrated meta-analysis approach led to identification of meta-QTLs/ candidate genes associated with rice root system architecture, which can be used in MQTL-assisted breeding/ genetic engineering of root traits. Root system architecture (RSA) is an important factor for facilitating water and nutrient uptake from deep soils and adaptation to drought stress conditions. In the present research, an integrated meta-analysis approach was employed to find candidate genes and genomic regions involved in rice RSA traits. A whole-genome meta-analysis was performed for 425 initial QTLs reported in 34 independent experiments controlling RSA traits under control and drought stress conditions in the previous twenty years. Sixty-four consensus meta-QTLs (MQTLs) were detected, unevenly distributed on twelve rice chromosomes. The confidence interval (CI) of the identified MQTLs was obtained as 0.11-14.23 cM with an average of 3.79 cM, which was 3.88 times narrower than the mean CI of the original QTLs. Interestingly, 52 MQTLs were co-located with SNP peak positions reported in rice genome-wide association studies (GWAS) for root morphological traits. The genes located in these RSA-related MQTLs were detected and explored to find the drought-responsive genes in the rice root based on the RNA-seq and microarray data. Multiple RSA and drought tolerance-associated genes were found in the MQTLs including the genes involved in auxin biosynthesis or signaling (e.g. YUCCA, WOX, AUX/IAA, ARF), root angle (DRO1-related genes), lateral root development (e.g. DSR, WRKY), root diameter (e.g. OsNAC5), plant cell wall (e.g. EXPA), and lignification (e.g. C4H, PAL, PRX and CAD). The genes located within both the SNP peak positions and the QTL-overview peaks for RSA are suggested as novel candidate genes for further functional analysis. The promising candidate genes and MQTLs can be used as basis for genetic engineering and MQTL-assisted breeding of root phenotypes to improve yield potential, stability and performance in a water-stressed environment.


Assuntos
Genoma de Planta , Oryza/genética , Raízes de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Marcadores Genéticos , Escore Lod , Oryza/anatomia & histologia , Melhoramento Vegetal , Raízes de Plantas/anatomia & histologia , Locos de Características Quantitativas
6.
PLoS One ; 16(7): e0254189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242309

RESUMO

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.


Assuntos
Pão , Estresse Salino , Triticum , Perfilação da Expressão Gênica
8.
Plant Physiol Biochem ; 159: 383-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450508

RESUMO

Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.


Assuntos
Secas , Folhas de Planta , Sorghum , Ceras , Genes de Plantas/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sorghum/química , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética , Água , Ceras/química , Ceras/metabolismo
9.
J Genet Eng Biotechnol ; 19(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409810

RESUMO

BACKGROUND: Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (- 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. RESULTS: The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., "Yousef" (drought-tolerant) and "Morocco" (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. CONCLUSIONS: The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.

10.
BMC Plant Biol ; 20(1): 452, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004003

RESUMO

BACKGROUND: Salinity, as one of the main abiotic stresses, critically threatens growth and fertility of main food crops including rice in the world. To get insight into the molecular mechanisms by which tolerant genotypes responds to the salinity stress, we propose an integrative meta-analysis approach to find the key genes involved in salinity tolerance. Herein, a genome-wide meta-analysis, using microarray and RNA-seq data was conducted which resulted in the identification of differentially expressed genes (DEGs) under salinity stress at tolerant rice genotypes. DEGs were then confirmed by meta-QTL analysis and literature review. RESULTS: A total of 3449 DEGs were detected in 46 meta-QTL positions, among which 1286, 86, 1729 and 348 DEGs were observed in root, shoot, seedling, and leaves tissues, respectively. Moreover, functional annotation of DEGs located in the meta-QTLs suggested some involved biological processes (e.g., ion transport, regulation of transcription, cell wall organization and modification as well as response to stress) and molecular function terms (e.g., transporter activity, transcription factor activity and oxidoreductase activity). Remarkably, 23 potential candidate genes were detected in Saltol and hotspot-regions overlying original QTLs for both yield components and ion homeostasis traits; among which, there were many unreported salinity-responsive genes. Some promising candidate genes were detected such as pectinesterase, peroxidase, transcription regulator, high-affinity potassium transporter, cell wall organization, protein serine/threonine phosphatase, and CBS domain cotaining protein. CONCLUSIONS: The obtained results indicated that, the salt tolerant genotypes use qualified mechanisms particularly in sensing and signalling of the salt stress, regulation of transcription, ionic homeostasis, and Reactive Oxygen Species (ROS) scavenging in response to the salt stress.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Salinidade , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Genótipo , Irã (Geográfico) , Locos de Características Quantitativas
11.
Rice (N Y) ; 12(1): 13, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830459

RESUMO

BACKGROUND: Salinity expansion in arable land is a threat to crop plants. Rice is the staple food crop across several countries worldwide; however, its salt sensitive nature severely affects its growth under excessive salinity. FL478 is a salt tolerant indica recombinant inbred line, which can be a good source of salt tolerance at the seedling stage in rice. To learn about the genetic basis of its tolerance to salinity, we compared transcriptome profiles of FL478 and its sensitive parent (IR29) using RNA-seq technique. RESULTS: A total of 1714 and 2670 genes were found differentially expressed (DEGs) under salt stress compared to normal conditions in FL478 and IR29, respectively. Gene ontology analysis revealed the enrichment of transcripts involved in salinity response, regulation of gene expression, and transport in both genotypes. Comparative transcriptome analysis revealed that 1063 DEGs were co-expressed, while 338/252 and 572/908 DEGs were exclusively up/down-regulated in FL478 and IR29, respectively. Further, some biological processes (e.g. iron ion transport, response to abiotic stimulus, and oxidative stress) and molecular function terms (e.g. zinc ion binding and cation transmembrane transporter activity) were specifically enriched in FL478 up-regulated transcripts. Based on the metabolic pathways analysis, genes encoding transport and major intrinsic proteins transporter superfamily comprising aquaporin subfamilies and genes involved in MAPK signaling and signaling receptor kinases were specifically enriched in FL478. A total of 1135 and 1894 alternative splicing events were identified in transcripts of FL478 and IR29, respectively. Transcripts encoding two potassium transporters and two major facilitator family transporters were specifically up-regulated in FL478 under salt stress but not in the salt sensitive genotype. Remarkably, 11 DEGs were conversely regulated in the studied genotypes; for example, OsZIFL, OsNAAT, OsGDSL, and OsELIP genes were up-regulated in FL478, while they were down-regulated in IR29. CONCLUSIONS: The achieved results suggest that FL478 employs more efficient mechanisms (especially in signal transduction of salt stress, influx and transport of k+, ionic and osmotic homeostasis, as well as ROS inhibition) to respond to the salt stress compared to its susceptible parent.

12.
PLoS One ; 14(3): e0213305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30875373

RESUMO

Salt stress is one of the major adverse environmental factors limiting crop productivity. Considering Iran as one of the bread wheat origins, we sequenced root transcriptome of an Iranian salt tolerant cultivar, Arg, under salt stress to extend our knowledge of the molecular basis of salinity tolerance in Triticum aestivum. RNA sequencing resulted in more than 113 million reads and about 104013 genes were obtained, among which 26171 novel transcripts were identified. A comparison of abundances showed that 5128 genes were differentially expressed due to salt stress. The differentially expressed genes (DEGs) were annotated with Gene Ontology terms, and the key pathways were identified using Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping. The DEGs could be classified into 227 KEGG pathways among which transporters, phenylpropanoid biosynthesis, transcription factors, glycosyltransferases, glutathione metabolism and plant hormone signal transduction represented the most significant pathways. Furthermore, the expression pattern of nine genes involved in salt stress response was compared between the salt tolerant (Arg) and susceptible (Moghan3) cultivars. A panel of novel genes and transcripts is found in this research to be differentially expressed under salinity in Arg cultivar and a model is proposed for salt stress response in this salt tolerant cultivar of wheat employing the DEGs. The achieved results can be beneficial for better understanding and improvement of salt tolerance in wheat.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Salinidade , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Transcriptoma , Triticum/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
13.
Plant Cell Rep ; 38(3): 361-376, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30627770

RESUMO

KEY MESSAGE: SbNAC genes (131) encoding 183 proteins were identified from the sorghum genome and characterized. The expression patterns of SbSNACs were evaluated at three sampling time points under post-flowering drought stress. NAC proteins are specific transcription factors in plants, playing vital roles in development and response to various environmental stresses. Despite the fact that Sorghum bicolor is well-known for its drought-tolerance, it suffers from grain yield loss due to pre and post-flowering drought stress. In the present study, 131 SbNAC genes encoding 183 proteins were identified from the sorghum genome. The phylogenetic trees were constructed based on the NAC domains of sorghum, and also based on sorghum with Arabidopsis and 8 known NAC domains of other plants, which classified the family into 15 and 19 subfamilies, respectively. Based on the obtained results, 13 SbNAC proteins joined the SNAC subfamily, and these proteins are expected to be involved in response to abiotic stresses. Promoter analysis revealed that all SbNAC genes comprise different stress-associated cis-elements in their promoters. UTRs analysis indicated that 101 SbNAC transcripts had upstream open reading frames, while 39 of the transcripts had internal ribosome entry sites in their 5'UTR. Moreover, 298 miRNA target sites were predicted to exist in the UTRs of SbNAC transcripts. The expression patterns of SbSNACs were evaluated in three genotypes at three sampling time points under post-flowering drought stress. Based on the results, it could be suggested that some gene members are involved in response to drought stress at the post-flowering stage since they act as positive or negative transcriptional regulators. Following further functional analyses, some of these genes might be perceived to be promising candidates for breeding programs to enhance drought tolerance in crops.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Sorghum/genética
14.
IEEE Trans Nanobioscience ; 17(4): 380-386, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028712

RESUMO

The ever-increasing use of silver nanoparticles (nAg) in various products necessitates investigation of the behavior of biological systems encountering these particles. In this paper, considering maize as a biological model, the effects of colloidal nAg (<80nm) on its cell culture were investigated. For comparison purposes, silver nitrate was used as a representative of silver ion (Ag+). After stabilization of cell suspensions, they were treated with nAg and Ag+ (1 mg/l), then cell suspension growth was measured and the microscopic analysis and a cell viability test were performed. In addition, the activity of superoxide dismutase (SOD) enzyme was explored. Owing to the key role of retinoblastoma-related protein (RBR) in cell cycle as well as in development and differentiation processes, the relative expression of ZmRBR1 was studied in nAg and Ag+ exposure. Microscopic analyses revealed that cells in suspensions treated by nAg and Ag+ were morphologically classified into five types: embryogenic; larvae-like; long; swollen; and polarized. The results showed an increase in percentages of large and live cells in the treated suspensions. Remarkably, we observed some cells which were differentiated into trichomes along with some stages of trichome development in the treated cell suspensions. Moreover, exposure to nAg and Ag+ did not elevate the activity of SOD enzyme in the treated cells. Also, the relative expression of ZmRBR1 was slightly reduced in the treated cells. The findings of these experimentations indicated that nAg affected maize suspension-cultured cells in the same manner as Ag+.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Nanopartículas Metálicas/química , Proteínas de Plantas/metabolismo , Prata/farmacologia , Superóxido Dismutase/metabolismo , Zea mays/efeitos dos fármacos , Técnicas de Cultura de Células , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Nanotecnologia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteína do Retinoblastoma , Superóxido Dismutase/análise , Zea mays/enzimologia , Zea mays/genética , Zea mays/metabolismo
15.
J Plant Res ; 130(4): 747-763, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28389925

RESUMO

Dehydrins, an important group of late embryogenesis abundant proteins, accumulate in response to dehydration stresses and play protective roles under stress conditions. Herein, phylogenetic analysis of the dehydrin family was performed using the protein sequences of 108 dehydrins obtained from 14 plant species based on plant taxonomy and protein subclasses. Sub-cellular localization and phosphorylation sites of these proteins were also predicted. The protein features distinguishing these dehydrins categories were identified using various attribute weighting and decision tree analyses. The results revealed that the presence of the S motif preceding the K motif (YnSKn, SKn, and SnKS) was more evident and the YnSKn subclass was more frequent in monocots. In barley, as one of the most drought-tolerant crops, there are ten members of YnSKn out of 13 HvDhns. In promoter regions, six types of abiotic stress-responsive elements were identified. Regulatory elements in UTR sequences of HvDhns were infrequent while only four miRNA targets were found. Furthermore, physiological parameters and gene expression levels of HvDhns were studied in tolerant (HV1) and susceptible (HV2) cultivars, and in an Iranian tolerant wild barley genotype (Spontaneum; HS) subjected to gradual water stress and after recovery duration at the vegetative stage. The results showed the significant impact of dehydration on dry matter, relative leaf water, chlorophyll contents, and oxidative damages in HV2 compared with the other studied genotypes, suggesting a poor dehydration tolerance, and incapability of recovering after re-watering in HV2. Under severe drought stress, among the 13 HvDhns genes, 5 and 10 were exclusively induced in HV1 and HS, respectively. The gene and protein structures and the expression patterns of HvDhns as well as the physiological data consistently support the role of dehydrins in survival and recovery of barley plants from drought particularly in HS. Overall, this information would be helpful for functional characterization of the Dhn family in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Desidratação , Secas , Genótipo , Hordeum/fisiologia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Água/metabolismo
16.
Plant Sci ; 252: 193-204, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717454

RESUMO

Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase. From four days of kernel incubation onwards, starch and non-reducing sugars accumulated only in the HCN treated axes. Cyanide also increased the activities of phosphoenolpyruvate carboxykinase and glyoxysomal succinate oxidase and led to greater acid invertase activity during the aforementioned period. The expressions of both sucrose transporter (JrSUT1) and H+-ATPase (JrAHA1) genes especially in cotyledons and H+-ATPase activity in kernels were significantly enhanced by exposure to cyanide. Thus in short-term HCN led to prevalence of carbohydrate catabolic events such as oxidative pentose phosphate pathway and possibly glycolysis in dormant walnut kernels. Long-term effects however, are increased gluconeogenesis and enhanced sugar transport capacity of kernels as a prerequisite for germination.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Cianetos/farmacologia , Juglans/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Juglans/embriologia , Juglans/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Tempo
17.
Planta ; 244(1): 191-202, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27016249

RESUMO

MAIN CONCLUSION: Fructan accumulation and remobilization to grains under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress. Tolerance of plants to abiotic stresses can be enhanced by accumulation of soluble sugars, such as fructan. The current research sheds light on the role of stem fructan remobilization on yield of bread wheat under salt stress conditions. Fructan accumulation and remobilization as well as relative expression of the major genes of fructan metabolism were investigated in the penultimate internodes of 'Bam' as the salt-tolerant and 'Ghods' as the salt-sensitive wheat cultivars under salt-stressed and controlled conditions and their correlations were analyzed. More fructan production and higher efficiency of fructan remobilization was detected in Bam cultivar under salinity. Up-regulation of sucrose: sucrose 1-fructosyltransferase (1-SST) and sucrose: fructan 6-fructosyltransferase (6-SFT) (fructan biosynthesis genes) at anthesis and up-regulation of fructan exohydrolase (1-FEH) and vacuolar invertase (IVR) genes (contributed to fructan metabolism) during grain filling stage and higher expression of sucrose transporter gene (SUT1) in Bam was in accordance with its induced fructan accumulation and remobilization under salt stress. A significant correlation was observed between weight density, WSCs and gene expression changes under salt stress. Based on the these results, increased fructan production and induced stem reserves remobilization under salinity can decrease dependency of the wheat tolerant cultivar on current photosynthesis and protect it from severe yield loss under salt stress conditions.


Assuntos
Frutanos/metabolismo , Caules de Planta/metabolismo , Salinidade , Sementes/metabolismo , Triticum/metabolismo , Transporte Biológico , Frutanos/biossíntese , Regulação da Expressão Gênica de Plantas , Genótipo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Concentração Osmolar , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/genética , Sementes/genética , Triticum/genética , Vacúolos/enzimologia , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
18.
J Genet ; 94(4): 611-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26690515

RESUMO

Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , /genética , Sequência de Aminoácidos , Flores/genética , Dados de Sequência Molecular , Folhas de Planta/genética
19.
Mol Biotechnol ; 57(1): 12-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25173685

RESUMO

The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Hordeum/genética , Ácido Abscísico/farmacologia , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Motivos de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Cromossomos de Plantas/genética , Temperatura Baixa , Sequência Conservada , DNA de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/genética , Hordeum/efeitos dos fármacos , Íntrons/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
20.
J Plant Physiol ; 170(14): 1277-84, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664583

RESUMO

Barley (Hordeum vulgare) is one of the most important cereals in many developing countries where drought stress considerably diminishes agricultural production. Glutathione S-transferases (GSTs EC 2.5.1.18) are multifunctional enzymes which play a crucial role in cellular detoxification and oxidative stress tolerance. In this study, 84 GST genes were identified in barley by a comprehensive in silico approach. Sequence alignment and phylogenetic analysis grouped these HvGST proteins in eight classes. The largest numbers of the HvGST genes (50) were included in the Tau class followed by 21 genes in Phi, five in Zeta, two in DHAR, two in EF1G, two in Lambda, and one each in TCHQD and Theta classes. Phylogenetic analysis of the putative GSTs from Arabidopsis, rice, and barley indicated that major functional diversification within the GST family predated the monocot/dicot divergence. However, intra-specious duplication seems to be common. Expression patterns of five GST genes from Phi and Tau classes were investigated in three barley genotypes (Yusof [drought-tolerant], Moroc9-75 [drought-sensitive], and HS1 [wild ecotype]) under control and drought-stressed conditions, during the vegetative stage. All investigated genes were up-regulated significantly under drought stress and/or showed a higher level of transcripts in the tolerant cultivar. Additionally, GST enzyme activity was superior in Yusof and induced in the extreme-drought-treated leaves, while it was not changed in Moroc9-75 under drought conditions. Moreover, the lowest and highest levels of lipid peroxidation were observed in the Yusof and Moroc9-75 cultivars, respectively. Based on the achieved results, detoxification and antioxidant activity of GSTs might be considered an important factor in the drought tolerance of barley genotypes for further investigations.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/genética , Hordeum/fisiologia , Malondialdeído/metabolismo , Proteínas de Plantas/genética , Adaptação Fisiológica , Dessecação , Genótipo , Glutationa Transferase/química , Glutationa Transferase/classificação , Glutationa Transferase/metabolismo , Hordeum/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , RNA/genética , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...